Current-induced birefringent absorption and non-reciprocal plasmons in graphene
نویسندگان
چکیده
منابع مشابه
Nonlinear Terahertz Absorption of Graphene Plasmons.
Subwavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, subwavelength devices. To date, the nonlinear response of graphene plasmon...
متن کاملTransverse current response of graphene at finite temperature, plasmons and absorption
We calculate the linear transverse current current response function for graphene at finite temperature and chemical potential. Within the Random Phase Approximation, we then discuss general aspects of transverse plasmons beyond the local response such as their dependence on temperature and on the surrounding dielectric media. We find, e.g., maximal confinement of this mode for a homogeneous di...
متن کاملEdge plasmons in graphene nanostructures
Plasmon modes in graphene are influenced by the unusual dispersion relation of the material. For bulk plasmons this results in a n1/4 dependence of the plasma frequency on the charge density, as opposed to the n1/2 dependence in two-dimensional electron gas (2DEG); yet, bulk plasmon dispersion in graphene follows a similar q1/2 behavior as for other two-dimensional materials. In this work we co...
متن کاملInfrared Topological Plasmons in Graphene.
We propose a two-dimensional plasmonic platform-periodically patterned monolayer graphene-which hosts topological one-way edge states operable up to infrared frequencies. We classify the band topology of this plasmonic system under time-reversal-symmetry breaking induced by a static magnetic field. At finite doping, the system supports topologically nontrivial band gaps with mid-gap frequencies...
متن کاملQuantum current modelling on tri-layer graphene nanoribbons in limit degenerate and non-degenerate
Graphene is determined by a wonderful carrier transport property and high sensitivityat the surface of a single molecule, making them great as resources used in Nano electronic use.TGN is modeled in form of three honeycomb lattices with pairs of in-equivalent sites as {A1, B1},{A2, B2}, and {A3, B3} which are located in the top, center and bottom layers, respectively. Trilayer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: 2D Materials
سال: 2016
ISSN: 2053-1583
DOI: 10.1088/2053-1583/3/1/015011